Create an "x, y table" of solutions, including x and y intercepts, and graph the equation:

$$y = \frac{2}{3}x + 1$$

This equation is in slope-intercept form, so named because this is the slope, and this is the y-intercept (when x is 0).

Graph the equation, which is written in slope-intercept form.

Graph the equation, which is written in slope-intercept form.

Graph the equation, which is written in slope-intercept form.

Slope-intercept form: y = mx + b

Examples:
$$y = \frac{2}{7}x - 3$$
, $y = -9x + 4$, $y = \frac{2}{5}x$

$$y = -9x + 4,$$

$$y = \frac{2}{5}x$$

Standard form: Ax + By = C

Examples:
$$2x + 6y = 18$$
 $5x - 3y = 7$ $8x + y = -10$

$$5x - 3y = 7$$

$$8x + y = -10$$

Write the equation in slope-intercept form and graph it.

Positive Slope

$$m = \frac{rise}{run} = \frac{3}{4}$$

$$\frac{3}{2}$$

$$\frac{3}{2}$$

$$\frac{2}{4}$$

$$\frac{3}{4}$$

$$\frac{3}{$$

Negative Slope

$$m = \frac{\text{rise}}{\text{run}} \quad \frac{1}{5} \quad \frac{1}{5}$$

$$\frac{4}{3} \quad \frac{1}{2} \quad \frac{1}{1} \quad \frac{1}{2} \quad \frac{3}{4} \quad \frac{4}{1} \quad \frac{1}{2} \quad$$

Slope is zero.

-2

-3

-4

Slope is undefined.

(also termed <u>no slope</u>)

horizontal line

vertical line

Given two points, find the slope.

$$(-4,1), (2,3)$$

Use the slope formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \frac{rise}{run} = \frac{2}{\sqrt{3}}$$

$$\frac{3-1}{2-4} = \frac{2}{2+4} = \frac{2}{6} = \left(\frac{1}{3}\right)$$

Given a point and a slope, you can graph the line.

$$(-4,1)$$
 $m=\frac{2}{5}$

parallel lines — slope is same $y = \frac{3}{2}x - 4$ $y = \frac{3}{2}x - 1$

perpendicular lines — slope is negative reciprocal

