Create an " x, y table" of solutions, including x and y intercepts, and graph the equation:

$$
y=\frac{2}{3} x+1
$$

This equation is in slope-intercept form, so named because this is the slope, and this is the y-intercept (when x is 0).

$$
y=\frac{2}{3} x+1
$$

Graph the equation, which is written in slope-intercept form.

$$
y=\frac{3}{5} x-2
$$

Graphing Linear Equations - Slope
Graph the equation, which is written in slope-intercept form.

$$
y=6 x+4
$$

Graph the equation, which is written in slope-intercept form.

$$
y=\frac{4}{7} x
$$

Slope-intercept form: $y=\mathrm{m} x+\mathrm{b}$
Examples: $y=\frac{2}{7} x-3, \quad y=-9 x+4, \quad y=\frac{2}{5} x$ Standard form: $\mathrm{A} x+\mathrm{B} y=\mathrm{C}$

Examples: $2 x+6 y=18 \quad 5 x-3 y=7 \quad 8 x+y=-10$
Write the equation in slope-intercept form and graph it.

$$
2 x+6 y=18
$$

Positive Slope

$\mathrm{m}=\frac{\text { rise }}{\text { run }}$

Slope is zero.
$\mathrm{m}=\frac{\text { rise }}{\text { run }}$

horizontal line

Negative Slope

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}
$$

Slope is undefined.
(also termed no slope)
$\mathrm{m}=\frac{\text { rise }}{\text { run }}$

vertical line

Given two points, find the slope. $\quad(-4,1),(2,3)$
Use the slope formula: $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\mathrm{m}=\frac{\text { rise }}{\text { run }}$

Given a point and a slope, you can graph the line.

$$
(-4,1) \quad m=\frac{2}{5}
$$

parallel lines - slope is same

$$
y=\frac{3}{2} x-4 \quad y=\frac{3}{2} x-1
$$

perpendicular lines - slope is negative reciprocal

$$
y=\frac{1}{4} x+2 \quad y=-\frac{4}{1} x+3
$$

